
Finance and Economics Discussion Series
Divisions of Research & Statistics and Monetary Affairs

Federal Reserve Board, Washington, D.C.

Price Discovery in the U.S. Treasury Cash Market: On Principal
Trading Firms and Dealers

James Collin Harkrader and Michael Puglia

2020-096

Please cite this paper as:
Harkrader, James Collin, and Michael Puglia (2020). “Price Discovery in the U.S. Treasury
Cash Market: On Principal Trading Firms and Dealers,” Finance and Economics Discus-
sion Series 2020-096. Washington: Board of Governors of the Federal Reserve System,
https://doi.org/10.17016/FEDS.2020.096.

NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary
materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth
are those of the authors and do not indicate concurrence by other members of the research staff or the
Board of Governors. References in publications to the Finance and Economics Discussion Series (other than
acknowledgement) should be cleared with the author(s) to protect the tentative character of these papers.



 
Price Discovery in the U.S. Treasury Cash Market:  

On Principal Trading Firms and Dealers* 
 

James Collin Harkrader     Michael Puglia 

            james.c.harkrader@frb.gov           michael.t.puglia@frb.gov 

 

October 19, 2020 

 

Abstract 

We explore the following question:  does the trading activity of registered dealers on Treasury 
interdealer broker (IDB) platforms differ from that of principal trading firms (PTF), and if so, how and to 
what effect on market liquidity?  To do so, we use a novel dataset that combines Treasury cash transaction 
reports from FINRA’s Trade Reporting and Compliance Engine (TRACE) and publicly available limit order 
book data from BrokerTec.  We find that trades conducted in a limit order book setting have high 
permanent price impact when a PTF is the passive party, playing the role of liquidity provider.  Conversely, 
we find that dealer trades have higher price impact when the dealer is the aggressive party, playing the 
role of liquidity taker.  Trades in which multiple firms (whether dealers or PTFs) participate on one or both 
sides, however, have relatively low price impact.  We interpret these results in light of theoretical models 
suggesting that traders with only a “small” informational advantage prefer to use (passive) limit orders, 
while traders with a comparatively large informational advantage prefer to use (aggressive) market 
orders.  We also analyze the events that occurred in Treasury markets in March 2020, during the onset of 
the COVID-19 pandemic. 
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1 INTRODUCTION 
 

We combine the Financial Industry Regulatory Authority’s (FINRA) Trade Reporting and Compliance 
Engine (TRACE) Treasury dataset with licensed data on BrokerTec limit order activity to study the price 
discovery process on Treasury interdealer broker (IDB) platforms.  We attempt to answer a broad 
question:  does the trading activity of registered1 dealers differ from that of (unregistered) principal 
trading firms (PTF), and if so, how and to what effect on market liquidity?  More precisely, we investigate 
whether the trades of dealers and PTFs have dissimilar permanent price impact, where price impact is 
measured using an SVAR framework in the spirit of Hasbrouck (1991a).   

The novelty of our datasets, and the algorithms we use to join them, permits us to study this topic in ways 
not formerly possible.  Unlike previous studies that have relied on anonymized BrokerTec data, the 
transaction-level data that we use enables us to investigate new topics in Treasury market microstructure.  
The TRACE Treasury dataset is a regulatory collection available only to the official sector.  Amongst else, 
it contains reports for all trades conducted on the BrokerTec platform (after April 2019) and identifies all 
firms that are party to the trades.   

The existence of the TRACE Treasury dataset owes to the events that occurred in Treasury markets on 
October 15, 2014, and the subsequent Joint Staff Report (JSR) which studied those events and prescribed 
a course of further action for the official sector.  Among its recommendations, the JSR advised “further 
study of the evolution of the U.S. Treasury market and its implications for market structure and liquidity” 
and “a review of the current regulatory requirements applicable to the government securities market and 
its participants” (emphasis added).  While our study is an early contribution to this effort, and we refrain 
from making prescriptions, we aim to inform the policy debates surrounding these recommendations. 

Though the TRACE Treasury dataset is a critical component of our study, it is not sufficient to conduct the 
analysis that follows.  In addition, we also use licensed order book data from BrokerTec to augment the 
TRACE Treasury dataset, which is necessary to make the data usable in Hasbrouck’s SVAR framework.  In 
order to join these two datasets, we have developed two algorithms, one that filters and matches buy 
and sell trade reports in the TRACE Treasury dataset, and another which implements a fuzzy join of the 
BrokerTec limit order book data on the TRACE trade reports. 

In a preview of results, we find that, ceteris paribus, trades have high permanent price impact when a PTF 
is the passive party, playing the role of liquidity provider on the BrokerTec platform.  Conversely, we find 
that dealer trades have higher price impact when the dealer is the aggressive party and taking liquidity 
from the platform.  Furthermore, trades in which both the buyer and seller are PTFs have very high price 
impact, while trades between two dealers have low price impact.  In between all of these extremes, trades 
that are matched with multiple firms (whether dealers or PTFs) on one or both sides have very low price 
impact.  Like trades between two PTFs, self-trades also have very high price impact.  We interpret these 
findings in light of theoretical predictions that informed traders prefer to use (passive) limit orders when 
                                                            
1 Firms that meet the definition of “dealer” as set in the Securities Exchange Act of 1934 are required to register 
with the Securities and Exchange Commission (SEC) and become a member of FINRA.  In doing so they become 
subject to SEC and FINRA oversight of their Treasury market activity.  Firms, such as PTFs, that do not meet the 
definition of “dealer” are able to avoid FINRA and many forms of SEC oversight.  See 15 U.S.C. § 78c(5). 

https://www.treasury.gov/press-center/press-releases/Documents/Joint_Staff_Report_Treasury_10-15-2015.pdf
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their advantage is “small” [Rosu 2020, Chaboud, Hjalmarsson and Zikes 2020], while traders with a 
comparatively large informational advantage prefer to use (aggressive) market orders.   

After presenting our main results, we also use our models to study the events that occurred in Treasury 
markets during March 2020, related to the onset of the COVID-19 pandemic.  We find that, during this 
period of acute market stress, the proportion of trades that were matched with multiple firms on one or 
both sides fell greatly as market depth declined (and market volume increased).  Furthermore, though the 
price impact of all trades rose greatly during this period, the increase for these multi-party trades stands 
out for its magnitude.   

 LITERATURE REVIEW 
 

The starting point of this paper is Fleming, Mizrach and Nguyen (2017, hereafter FMN), which estimates 
the price impact of trades and limit orders on the BrokerTec platform using the structural vector 
autoregression (SVAR) from Hasbrouck (1991a).  The data that they use does not identify the participants 
to trades or their types, however, and so they cannot explore price discovery dynamics at the participant 
level.  Brogaard, Hendershott and Riordan (2019, hereafter BHR) extend Hasbrouck (1991a) with 
participant-type information to study the differentiated price impact of limit and market orders across 
HFT and non-HFT trading strategies in Canadian equity markets.  Our paper uses similar methods, though 
our dataset distinguishes individual traders by business model, while theirs distinguishes traders by 
trading strategy.2  Finally, Chaboud, Hjalmarsson and Zikes (2020, hereafter CHZ) extend Hasbrouck 
(1991a) with participant type information to study foreign exchange markets, and explore the changing 
role of limit orders in the price discovery process on the EBS platform over an extended period.  Our paper 
borrows heavily from CHZ and presents the Treasury market-version of one of their models, but also 
extends it to investigate the differential price impact of trades by participant type.  In particular, we 
consider pairwise interactions between PTFs and dealers, in order to identify the function that maps 
market order flow, liquidity provider and liquidity taker into permanent price impact. 

Consistent with results published in FMN, we find the cumulative price impact of market orders overall to 
be small relative to typical bid-ask spreads, which merely reflects the fact that the US Treasury cash market 
is large, liquid and highly efficient.  Furthermore, the price impact of trades generally increases with tenor, 
meaning that the price impact of a trade in the 30-year on-the-run security on BrokerTec is higher than 
the price impact of a trade in the 10-year security and so on.  Although our sample period (mid-2019 to 
early 2020) does not overlap that used in FMN (2010-2011), our benchmark results are consistent. 

Fleming, Nguyen (2018, hereafter FN) study the workup protocol on the BrokerTec platform and find that 
trades occurring in the workup have lower price impact than trades occurring in the pre-workup or normal 
trading period.  Although we cannot identify the workup very easily in our dataset, we are able to 
                                                            
2 That is, the dataset used in BHR classifies participants according to trading strategy (i.e. HFT vs. non-HFT trading) 
and not by business model (i.e. registered dealers vs. PTFs).  Conversely, the dataset used in this paper classifies 
participants very accurately by business model, but not by trading strategy.  To the extent that some dealers 
implement HFT strategies, the distinction becomes important.  The dataset used by BHR also identifies 
participants’ market order and limit order activity.  The dataset used in this paper only identifies participants’ 
market order activity. 
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distinguish trades that include multiple parties on one or both sides (whether or not they occur in a 
workup) and those conducted between only one buyer and one seller.  Consistent with FN, we find that 
trades conducted between one seller and one buyer (i.e. one-to-one) have significantly higher price 
impact than those that are matched between multiple buyers and/or sellers (i.e. multi-party).  We are 
also able to identify self-trading3 in our dataset, and find that trades matching a buyer and a seller from 
the same firm, although relatively rare in the data, have very high and statistically significant permanent 
price impact, higher than either one-to-one and multi-party trades.  

These latter findings motivate the investigation at the core of this paper, regarding the difference between 
dealer and PTF trading activity and its effect on market liquidity.  The remainder of this paper is structured 
as follows.  In the next section, we discuss limit order book trading and the BrokerTec platform. In Section 
3, we describe the TRACE Treasury dataset and the BrokerTec limit order book information that we have 
used.  In Section 4, we detail our models and present results.  In Section 5, we provide some analysis of 
the events in Treasury markets that occurred in March 2020 during the onset of the COVID-19 pandemic. 
Section 6 concludes.  

2 LIMIT ORDER BOOKS AND THE BROKERTEC PLATFORM 
 

The focus of this paper is intermediation on electronic Treasury IDB platforms.  We use data on trading 
and limit order book activity on the BrokerTec platform, which has been the subject of many other studies 
on this topic, including the JSR and FMN.   

BrokerTec, like all other Treasury IDB firms, operates a limit order book (sometimes called a central limit 
order book, or CLOB).  When traders submit limit orders to buy and sell securities at specific prices and 
amounts, they are entered into a record of standing bids and offers according to price and time priority.  
Other participants may act upon standing limit orders and trade by submitting market orders.  Trade 
executions resulting from market orders are assigned to limit orders according to their rank in the price-
time queue.  High bids and low offers in the limit order book outrank lower bids and higher offers, 
respectively, and at any given price, rank is assigned by time arrival, with the earliest arrivals given priority 
over later arrivals.  Figure 1 below is a stylized example of the limit order book for a generic security.  Four 
buyers and four sellers have entered limit orders to buy and sell, which are displayed in order of 
descending price/time priority. 

Many order types are available to traders on the BrokerTec platform, but for the present purpose, they 
can be characterized simply as either market or limit.  Market orders are aggressive, and entered at a 
bid/offer price which is high/low enough to execute immediately.  Conversely, limit orders are passive 
and entered at prices too low/high to transact immediately, but will rest in the order book until matched 
with a sufficiently aggressive market order.  Traders may cancel limit orders at any time before being 

                                                            
3 Self-trading is a phenomenon in the Treasury market first identified in the Joint Staff Report (JSR) on October 15th 
2014.  It can occur when independent HFT trading algorithms operated by the same firm are matched in a limit 
order book.  This will we described in more detail later. 

https://www.treasury.gov/press-center/press-releases/Documents/Joint_Staff_Report_Treasury_10-15-2015.pdf
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matched.  Using the example above, a market order to sell 2 units, entered by seller A5 will be matched 
with buyer B1’s limit order, resulting in a trade for 2 units at a price of 99. 

Figure 1: Stylized Example of a Limit Order Book 

Buyer Bid Amount Bid Price Ask Price Ask Amount Seller 
B1 2 99 100 1 A1 
B2 2 99 100 1 A2 
B3 1 98 100 1 A3 
B4 1 98 101 1 A4 

 

Note: The figure displays a stylized example of a limit order book for a generic security where four buyers and four sellers 
have entered limit orders to buy and sell.  The rows are presented in order of descending price/time priority. 

In a limit order book market, trades are not necessarily matched between a single buyer and a single 
seller.  It is possible to have multiple parties present on either or both sides of the top price level of the 
order book, and if the schedule of bids and offers permits, many buyers and sellers can be matched 
simultaneously.  For example, in Figure 1 above, buyers B1 and B2 have both entered bids at the same 
price, and only time priority distinguishes them in the queue.  If, in the previous example, seller A5 had 
entered a market order to sell 4 units rather than 2, two matches (but still one trade) would have resulted: 
one with buyer B1 for 2 units and one with buyer B2 for 2 units, both at a price of 99.  For the remainder 
of this paper, trades conducted between a single buyer and a single seller will be referred to as “one-to-
one,” and trades with multiple parties on one or both sides of the trade will be referred to as “multi-party” 
unless noted otherwise.4 

In addition to multi-party and one-to-one trades, self-trading, a phenomenon first identified in the JSR, is 
possible on the BrokerTec platform and can be observed in our dataset.  Self-trading occurs when 
independent traders (or automated algorithms) from the same firm submit bids and offers that match in 
the order book.5  Like any other match in the limit order book, a self-trade may be conducted multi-party 
or one-to-one. In a one-to-one self-trade, the same firm is both the buyer and the seller and there is no 
change in beneficial ownership.  Using the example of Figure 1 again, if a trader from firm B1 (separate 
from the trader from firm B1 that has a standing limit order to buy 2 units at a price of 99) enters a market 
order to sell 2 units, a self-trade at 99 with firm B1 appearing as both the buyer and seller will occur. 

Table 1 below summarizes the frequency with which these various forms of interaction – one-to-one, 
multi-party and self-trade6 – occur on the BrokerTec platform across all securities, unless noted otherwise, 
from April 15, 2019 to February 15, 2020.  Note that, on a trade count basis the vast majority of trades 
are one-to-one, but due to the higher average (aggregated) trade size, the majority of volume is multi-
party.  One-to-one self-trades account for only 1% of volume, but when accounting for multi-party trades 

                                                            
4 The workup protocol on BrokerTec, which is an order type separate from limit and market orders, permits 
multiple buyers to be matched with multiple sellers.  See FN for more detail. 
5 It is important to note that “self-trade” and “wash-trade” are not synonymous, since the former is generally 
considered to occur inadvertently and without fraudulent indent.  For more information on self-trading, see 
FINRA’s rule regarding self-trading, the Futures Industry Association (FIA) Principal Traders Group (PTG) response 
to CFTC’s Concept Release on Risk Controls and System Safeguards for Automated Trading Environments, or JSR. 
6 Throughout this paper, we define self-trades to be one-to-one self-trades and use the terms interchangeably.  
Trades in which the same firm appears on both sides, but so does at least one other firm on at least one side are 
multiparty. 

https://www.finra.org/sites/default/files/NoticeDocument/p540972.pdf
https://secure.fia.org/downloads/cftc_concept_release_on_risk_controls_121113.pdf
https://www.cftc.gov/PressRoom/PressReleases/pr6683-13
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(not shown) in which the same firm is on both sides of a match, but so are other firms potentially, the 
volume that is self-traded rises to 5.4%, which is in line with figures reported in the JSR. 

Table 1: Trade Matching on BrokerTec by Number of Counterparties 

Type of Match One-to-one 
(ex. self-trades) 

Multi-Party 
(at least one side) 

Self-trades  
(one-to-one only) 

Share of Volume 42.2% 57.0% 0.8% 
Share of Trade Count 71.5% 26.6% 1.8% 

Avg. Trade Size (10-year, $ million) 1.5 5.4 1.3 
Median Trade Size (10-year, $ million) 1 3 1 

 

Note: The table reports descriptive statistics for trade matching activity on the BrokerTec platform from April 15, 2019 to 
February 15, 2020.  One-to-one trades are those matched between a single buyer and single seller, excluding self-trades.  
Multi-party trades include more than one participant on either or both sides.  One-to-one self-trades are those in which the 
single seller and single buyer are the same firm.  Percentages may not total 100% due to rounding. 

Source: Authors' calculations based on data from the Repo Interdealer Broker Community and FINRA TRACE 

Using the TRACE data to identify individual participants on the BrokerTec platform, we find that they fall 
into two broad categories: FINRA registered dealers (both primary and other dealers) and their associated, 
global subsidiary companies7 (which we will generically call dealers); and PTFs.  There is also a third class 
of residual firms that we are unable to clearly identify as either dealers or PTFs, which we lump into a 
generic “other” category.  Table 2 below summarizes activity on the BrokerTec platform by participant 
type.  The first column indicates the share of total volume transacted between April 15, 2019 and February 
15, 2020.  In the second column, the share of market orders submitted (aggressive trade orders resulting 
in a transaction) is indicated, while in the third column the share of liquidity provided (passive limit orders 
that are aggressed by other participants) is indicated.  Note that PTFs account for the majority of volume 
and that their activity is weighted towards liquidity provision, while for dealers activity is weighted 
towards liquidity consumption. 

Table 2: Activity by Participant Type on BrokerTec 

Participant Type Share of Volume Share of Liquidity Consumption 
(Aggressive) 

Share of Liquidity Provision 
(Passive) 

PTF 60.2% 54.6% 65.8% 
Dealer 38.7% 44.7% 33.6% 
Other 1.1% 0.8% 0.6% 

 

Note: The table reports, by participant type, the share of volume, the share of market orders (aggressive trades) and the 
share of liquidity provision (passive trades) executed on the BrokerTec platform from April 15, 2019 to February 15, 2020.  
Percentages may not total 100% due to rounding. 

Source: Authors' calculations based on data from the Repo Interdealer Broker Community and FINRA TRACE 

 

                                                            
7 An associated, global subsidiary may be a European or Asian branch of a domestic investment banking firm.  The 
branch firm may not be required to register with the SEC or become a FINRA-member firm if it is regulated in the 
foreign country, but may still transact on BrokerTec.  In these cases, we still classify the subsidiary as a dealer and 
not a PTF or other participant. 
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3 DATA SOURCES 
 

This analysis combines two datasets: the TRACE Treasury dataset, which contains identified trade reports 
for all transactions conducted on the BrokerTec platform (after April 2019) and anonymized Level I (best 
bid and offer) order book data available from BrokerTec itself.  Neither dataset is sufficient by itself to 
conduct the following analysis, so the datasets had to be joined.  In the following, we briefly describe the 
datasets and our procedures for merging them.  

 TRACE TREASURY TRANSACTION DATA 
 

Since July 2017, FINRA has collected data on Treasury transactions from its registered broker-dealer 
members through the TRACE platform. FINRA requires its members to report all transactions in 
marketable U.S. Treasury securities.  The reporting obligation applies only to FINRA member firms and 
since most major broker-dealers and IDBs are members (including BrokerTec and 21 of the 24 primary 
dealers), most domestic Treasury market activity is reported into TRACE and all of the BrokerTec activity 
that we are interested in is reported.  Firms that are not FINRA members and that do not report to TRACE 
include banks, bank branches and foreign subsidiaries of dealers, buy-side institutions and, importantly 
where this study is concerned, PTFs. 

FINRA members report the identity of the counterparty to a trade when the counterparty is also a FINRA 
member.  When the counterparty is not a FINRA member, however, the transaction is reported as taking 
place with an anonymous counterparty, identified only as “C”.  Thus, buy-side clients transacting directly 
with dealers (so called dealer-to-client or DTC activity) are anonymous in the data.  Before April 2019, buy-
side institutions and PTFs transacting on electronic IDB platforms like BrokerTec (so-called interdealer-
broker or IDB activity) were also anonymous in the data, which prevented a study like ours from being 
conducted.  

On April 1, 2019, a new FINRA rule took effect that requires the electronic interdealer broker platforms 
used by PTFs (such as BrokerTec) to identify all of their customers in trade reports.  The TRACE Treasury 
trade reports submitted after this date provide the identifying information necessary for us to positively 
classify non-FINRA firms conducting trades on the BrokerTec platform as either a dealer or a PTF.8  This in 
turn has enabled us to conduct this analysis.9 

Each trade report in the TRACE dataset includes the identities of both parties to the trade, the Treasury 
security CUSIP and transaction price (including brokerage) and is timestamped to the microsecond.  

                                                            
8 We expand the definition of dealer to include not only SEC-registered, FINRA-member broker-dealers, but also 
banks conducting a Treasury business under the Government Securities Act of 1986 and foreign subsidiaries of 
these firms that are not subject to US regulation, but still transact on Treasury IDB platforms.  This group includes 3 
of the 24 primary dealers and a large number of foreign subsidiaries of the primary dealers.  Furthermore, some 
PTF firms do conduct a small amount of volume through FINRA-registered entities.  We have classified these 
volumes as PTF, not dealer. 
9 To be clear, the participant classification has been created by the authors, using participant identifiers provided in 
the TRACE data.  The participant classifications applicable to this analysis are not provided directly by FINRA. 
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Because BrokerTec is a FINRA member and reports its trades, the subset of trades in the TRACE dataset 
that are conducted on BrokerTec are clearly identifiable.  Every trade occurring on the platform is reported 
by BrokerTec as two trades – one buy and one sell – which we must match together in order to determine 
the matched buyer and seller identities.  This TRACE matching process constitutes the first step of our join 
algorithm. 

 BROKERTEC ORDER BOOK DATA 
 

In the standard Hasbrouck (1991a) SVAR framework, the midpoint of the best bid and offer in the limit 
order book is used as a proxy for price when computing returns between market order events.  Because 
the TRACE Treasury dataset only includes transactions, and not limit order book information, it is not 
sufficient for use in this modeling framework.  However, because the order book information is available 
from BrokerTec directly, and because the timestamps between the two datasets are reported to the 
microsecond and synced well, it is possible for us to merge these two datasets and use the result in an 
SVAR framework. 

The order book information available from BrokerTec includes the best bid price and depth of the book 
at that price, as well as the best offer price and the depth of the book at that price at any point in time, to 
microsecond precision.  Each time the order book state changes (due to trade executions, the submission 
of new limit orders or the cancelation of existing ones) a new record appears, allowing us to match each 
TRACE Treasury trade report to the state of the order book when it occurred, as well as the state of the 
order book subsequent to the trade.  Furthermore, the order book data also includes trades, which 
correspond one-to-one with TRACE trade reports.  The transaction prices reported in the order book data 
are free of brokerage. 

After matching BrokerTec’s TRACE trade reports together, the time series of transactions that it implies is 
joined on the order book data using a fuzzy matching algorithm that we have written specifically for the 
purpose.  The join is fuzzy in the sense that it must contend with:  

- Imprecise trade timestamps between the two sets, which means the reported timestamps for a 
given trade rarely match perfectly 
 

- The fact that the TRACE prices are reported with brokerage and the BrokerTec order book data is 
reported without, meaning the reported prices for a given trade will rarely match perfectly 
 

- The fact that trades appearing in the BrokerTec data sometimes do not appear in the TRACE data 

To be more clear on this latter point, the BrokerTec order book data available to us implies a slightly higher 
volume of trades than that implied by the TRACE data. 10  This slippage remains generally less than 2% of 
a day’s volume, however, and anecdotally we find the slippage occurs during Asia hours when volumes 
are low.  Regarding the timestamp precision, we note there appears to be a small reporting delay in the 
                                                            
10 This is not to imply that there is a problem with the source data.  The data that is available to us is processed at 
multiple points within the Federal Reserve System, and it is possible if not likely that the slippage occurs at one of 
these points. 
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TRACE timestamps, of less than 100 microseconds, relative to the BrokerTec trade timestamps.  This does 
not pose great difficulty in implementing the fuzzy join, however, after considering the long average time 
between trades relative to the much shorter average time between order book state changes.11   

The time series panel resulting from the fuzzy join of the TRACE and BrokerTec data includes the 
timestamp, CUSIP, executed price (free of brokerage) and participant-level amounts for each transaction 
and identifies the class of participant on each side of the trade (and self-trades) and the state of the order 
book when the transaction occurred.  The sample used to produce our main results in Section 4 runs from 
April 15, 2019 to February 15, 2020, and we use only limit orders/transactions between 8am and 4pm 
New York time.  FINRA’s TRACE Treasury reporting rule change dictates the start date.  We have chosen 
the end date of the sample to precede March 2020, in order to avoid complicating our analysis with the 
extraordinary events that happened in Treasury markets during of the onset of the COVID-19 pandemic.  
In Section 5, we use data from March 2020 to analyze those events. 

4 MODELS AND RESULTS 
 

We employ the bivariate SVAR framework of Hasbrouck (1991a) to measure the price impact of trades, 
which relates market order flow (trades) and returns in a vector autoregression, 

 

𝐴𝐴𝑦𝑦𝑡𝑡 = �𝐵𝐵𝑖𝑖𝑦𝑦𝑡𝑡−𝑖𝑖 + 𝐷𝐷1 2� 𝜀𝜀𝑡𝑡

𝑝𝑝

𝑖𝑖=1

,         𝜀𝜀𝑡𝑡~𝑖𝑖𝑖𝑖𝑖𝑖(0, 𝐼𝐼) 

 

where 𝑦𝑦𝑡𝑡  is a vector of endogenous variables, 𝐴𝐴 is a matrix of structural parameters, 𝐷𝐷 is a covariance 
matrix and the 𝐵𝐵𝑖𝑖 are unrestricted, lagged coefficient matrices.  All of the models we study are defined by 
1) a specification for the vector of endogenous variables and 2) restrictions on the structural parameter 
matrix.  We begin with the standard Hasbrouck (1991a) model, studied in FMN, which incorporates 
anonymous (signed) market order flow12 𝑥𝑥𝑡𝑡  and returns 𝑟𝑟𝑡𝑡 only: 

 

    𝑦𝑦𝑡𝑡 =  �
𝑟𝑟𝑡𝑡
𝑥𝑥𝑡𝑡�   𝐴𝐴 = �1 −𝑎𝑎

0 1 �    (M1a) 

 

                                                            
11 See Appendix for additional detail on the process of matching sides of limit order book transactions in TRACE 
and the merger of TRACE and BrokerTec. 
12 That is, signed trade size, where buys are positive and sells are negative, in millions of dollars.  The order flow 
variables used in all of our model specifications are defined similarly. 



8 
 

Similar to, but not exactly as FMN, 𝑟𝑟𝑡𝑡 = 𝑝𝑝𝑡𝑡−𝑝𝑝𝑡𝑡−1 is the change in the midpoint of the best bid and offer 
quoted13 between the arrivals of market orders, where t indexes the time immediately prior to the arrival 
of the t+1th market order.14  Under this specification, A allows order flow to contemporaneously affect 
returns while returns only affect order flow with a lag. 

In Table 1 above, and in its discussion, we showed that the majority of trades on BrokerTec, measured on 
the basis of trade count, occur one-to-one, while on the basis of volume the majority are conducted multi-
party.  Furthermore, we showed that self-trading accounts for a small but not negligible amount of 
activity.  In order to test for differential price impact between one-to-one, multi-party and (one-to-one) 
self-trades, we extend M1a in a spirit similar to FN, and model the market order flow for each of these 
types of trades separately.  The vector of endogenous variables and the matrix of structural parameters 
for M1b are: 

 

         𝑦𝑦𝑡𝑡 =  �

𝑟𝑟𝑡𝑡
𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜−𝑡𝑡𝑜𝑜−𝑜𝑜𝑜𝑜𝑜𝑜,𝑡𝑡
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝,𝑡𝑡
𝑥𝑥𝑠𝑠𝑜𝑜𝑚𝑚𝑠𝑠−𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑜𝑜,𝑡𝑡

�   𝐴𝐴𝑇𝑇 = �

1 0 0 0
−𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜−𝑡𝑡𝑜𝑜−𝑜𝑜𝑜𝑜𝑜𝑜 1 0 0
−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝 0 1 0
−𝑎𝑎𝑠𝑠𝑜𝑜𝑚𝑚𝑠𝑠−𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑜𝑜 0 0 1

�  (M1b) 

 

In this case, the subscripted 𝑥𝑥𝑖𝑖,𝑡𝑡 denote signed market order flow for each type of trade i.   

When estimating any of our models, we use 𝑝𝑝 = 5 lags in the SVAR, mainly because it is consistent with 
FMN and CHZ and we do not want to innovate over this parameter.  Permanent (long run, cumulative) 
price impact response to a unit shock to order flow variable i is measured as: 

𝑃𝑃𝑟𝑟𝑖𝑖𝑃𝑃𝑃𝑃 𝐼𝐼𝐼𝐼𝑝𝑝𝑎𝑎𝑃𝑃𝐼𝐼𝑖𝑖 =
𝜕𝜕𝑟𝑟𝑡𝑡+∞
𝜕𝜕𝑥𝑥𝑖𝑖,𝑡𝑡

 

Table 3 below displays these price impact estimates (expressed in basis points of par per $100 million) for 
models M1a and M1b for the 5-, 10- and 30-year securities.  Confidence intervals are determined by 
bootstrap and values that are statistically significant at the 5% level are noted with an asterisk.  In addition 
to bootstrapping the confidence intervals for the price impact estimates, bootstrap tests of differences 
between price impact estimates for each pairing of the order flow types in M1b were conducted as well.  
For the 10-year security15, all pairwise differences are significant at the 5% level.  Detailed bootstrap 
results can be found in Appendix B, in Table B1 and Table B2. 

  

                                                            
13 In units of $100 par 
14 In FMN, t indexes the time immediately after the arrival of tth market order.  In order words, there is a shift of 
the index between market order events.  This change was mainly a matter of technical convenience; we find that it 
is of no consequence and we arrive at similar results. 
15 We focus much of our discussion in what follows on the 10-year security, because it is more liquid than the 30-
year, and because the minimum tick size is probably less binding than the 5-year. 
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Table 3: Price Impact of Trades for Models M1a and M1b 

 M1a M1b 
Security All Trades One-to-one Multi-party Self-trades 
5-year 1.27* 3.33* 1.13* 6.86* 

10-year 2.89* 9.32* 2.66* 15.20* 
30-year 19.78* 28.32* 15.63* 7.35 

 

Note: The table reports estimated permanent price impact of market orders, in basis points of par per $100 million, under 
models M1a and M1b, for trades in the 5-, 10- and 30-year securities executed on BrokerTec from April 15, 2019 to 
February 15, 2020.  Confidence intervals are determined by bootstrap and values that are statistically significant at the 5% 
level are noted with asterisk.  The bootstrap results and standard errors are detailed in Appendix B, Tables B1. 

Source: Authors' calculations based on data from the Repo Interdealer Broker Community and FINRA TRACE 

The results for model M1a are consistent with FMN, despite the differences in the samples.  While the 
data here spans a period in 2019-20 and joins both TRACE and BrokerTec data, the sample in FMN spans 
2010-11 and is not complicated by our joining procedure.  Still, the rank ordering and magnitude of the 
price impact estimates are little changed.  

The results for M1b are interesting for a couple reasons.  First, consistent with FN, which finds that trades 
executed in the workup have lower price impact than those executed in the pre-workup, we find that 
trades executed one-to-one (which are more likely to be pre-workup) have higher price impact than trades 
executed by multiple parties (whether they are workup or pre-workup).  The results for multi-party trades 
are very similar to the same-side workup trade price impact figures presented in FN, and our estimates of 
one-to-one price impact are strictly higher than the estimates of pre-workup price impact in FN, which is 
to be expected given the differences in the order flow definitions.16   

The results for model M1b also indicate that self-trades have very high price impact, greater than either 
one-to-one or multi-party trades for the 5- and 10-year securities.  The price impact estimate for self-
trades in the 30-year security is not significantly different than zero.  (There are a small number of 30-year 
self-trade observations, however, averaging only 45 per day or 0.6% of average daily volume in that 
security.17)  This is a new result, not found in previous studies, that is difficult to interpret in the context 
of just model M1b, and so we leave its discussion until later in this section. 

Having demonstrated that we can benchmark previously published work on this topic with our dataset,  
we now turn to the central question of this study and consider the degree to which counterparty identity 
or class affects permanent price impact.  Our next specification (M2a) follows CHZ model 2 and models 
the (aggressive) market order flow originating from PTFs, dealers and residual other firms separately from 

                                                            
16 That is, since pre-workup trades can be either one-to-one trades or one-to-multiple, we’d expect the measure 
that isolates one-to-one trades to be higher than that which allows one-to-multiple 
17 In a bootstrap exercise, the joint hypotheses that one-to-one trades have higher price impact than multi-party 
trades and self-trades have the highest price impact of all was tested.  Across all three securities, the null 
hypothesis that multi-party trades have higher price impact than one-to-one trades is rejected at the 5% level.  For 
the 10-year security, the null hypothesis that self-trades do not have higher price impact than either one-to-one or 
multi-party trades is rejected at the 5% level.  For the 30-year security, the null hypothesis that self-trades do not 
have higher price impact than multi-party trades is rejected at that level.  See Appendix B for more detail.  
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market order flow originating from multiple firms and self-trades.  The vector of endogenous variables 
and the matrix of structural parameters for M2a are: 

 

𝑦𝑦𝑡𝑡 =  

⎝

⎜⎜
⎛

𝑟𝑟𝑡𝑡
𝑥𝑥𝑃𝑃𝑇𝑇𝑃𝑃−𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝,𝑡𝑡
𝑥𝑥𝐷𝐷𝑜𝑜𝑝𝑝𝑚𝑚𝑜𝑜𝑝𝑝−𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝,𝑡𝑡
𝑥𝑥𝑂𝑂𝑡𝑡ℎ𝑜𝑜𝑝𝑝−𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝,𝑡𝑡
𝑥𝑥𝑀𝑀𝑚𝑚𝑚𝑚𝑡𝑡𝑖𝑖−𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝,𝑡𝑡
𝑥𝑥𝑆𝑆𝑜𝑜𝑚𝑚𝑠𝑠−𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝,𝑡𝑡 ⎠

⎟⎟
⎞

 

 

   𝐴𝐴𝑇𝑇 =

⎝

⎜
⎜
⎜
⎛

1 0 0 0 0 0
−𝑎𝑎𝑃𝑃𝑇𝑇𝑃𝑃−𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝 1 0 0 0 0
−𝑎𝑎𝐷𝐷𝑜𝑜𝑝𝑝𝑚𝑚𝑜𝑜𝑝𝑝−𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝 0 1 0 0 0
−𝑎𝑎𝑂𝑂𝑡𝑡ℎ𝑜𝑜𝑝𝑝−𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝 0 0 1 0 0
−𝑎𝑎𝑀𝑀𝑚𝑚𝑚𝑚𝑡𝑡𝑖𝑖−𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝 0 0 0 1 0
−𝑎𝑎𝑆𝑆𝑜𝑜𝑚𝑚𝑠𝑠−𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝 0 0 0 0 1⎠

⎟
⎟
⎟
⎞

   (M2a) 

 

The subscripted 𝑥𝑥𝑖𝑖,𝑡𝑡 denote signed market order flow for each participant type i, where “aggr” is 
shorthand for aggressive, meaning the participant submitted the market order, thereby consuming 
liquidity.  For the PTF trades, all trades in which every aggressive participant is a PTF, even if there are 
multiple, are included; likewise for the dealer and other trades.  The multi-party variable designates trades 
in which there are multiple participant types (e.g. PTF and dealer, or all three) on the aggressive side of 
the trade.  For any of these variables, any number or type of participants may be found on the passive 
side of the trade, with the only exception being the self-trades.  Consistent with model M1b, the self-trade 
variable includes only one-to-one self-trades where a single firm is both the buyer and the seller. 

Before presenting the results for model M2a, we also specify a model M2b that begins with M2a and 
simply switches all order flow variables to the passive side, meaning the participant we model is providing 
liquidity to the market when a market order from another participant arrives.  That is, for the PTF trades, 
all trades in which every passive participant is a PTF, even if there are multiple, is included in the order 
flow variable 𝑥𝑥𝑃𝑃𝑇𝑇𝑃𝑃−𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠,𝑡𝑡.  Dealer, other and multi-party trades follow suit and the self-trade order flow 
variable is the same as that used in M1b and M2a. 

Table 4 below displays price impact results (in basis points of par per $100 million) for models M2a and 
M2b for the 5-, 10- and 30-year securities.  Confidence intervals are determined by bootstrap and values 
that are statistically significant at the 5% level are noted with an asterisk.  In addition to bootstrapping the 
confidence intervals for the price impact estimates, bootstrap tests of differences between price impact 
estimates for each pairing of the order flow types were conducted as well.  For the 10-year security all 
pairwise differences are significant at the 5% level for both M2a and M2b.  Detailed bootstrap results can 
be found in Appendix B, in Tables B3, B4 and B5. 
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Table 4: Price Impact of Trades for Models M2a and M2b 

 M2a (Aggressive) M2b (Passive) 
Security PTF Dealer Other Multi Self PTF Dealer Other Multi Self 
5-year 1.64*  1.99* -0.93  0.95*  6.51*  2.19*  0.67*  0.84  -0.12  6.30*  

10-year 4.91*  4.35*  3.49*  2.13* 14.27*  4.92*  1.68 * 2.68 * -0.86  13.44*  
30-year 26.84*  21.91*  12.21  11.61*  6.44  28.44*  13.49 * -4.26  -5.06  5.04  

 

Note: The table reports estimated permanent price impact of market orders, in basis points of par per $100 million, under 
models M2a and M2b, for trades in the 5-, 10- and 30-year securities executed on BrokerTec from April 15, 2019 to 
February 15, 2020.  Confidence intervals are determined by bootstrap and values that are statistically significant at the 5% 
level are noted with asterisk.  The bootstrap results and standard errors are detailed in Appendix B, Table B3. 

Source: Authors' calculations based on data from the Repo Interdealer Broker Community and FINRA TRACE 

The price impact estimates for model M2a indicate that market orders submitted by PTFs for the 10-year 
security have slightly higher price impact than those submitted by dealers.18  This is generally consistent 
with results presented in CHZ.19  The price impact estimate for the residual of other firms is generally not 
significant and the fact that it is significant for the 10-year likely reflects the fact that this variable is likely 
a blend of PTF and dealer activity (which we are unable to identify clearly as either).20  Consistent with 
model M1b, trades in which participants of multiple types appear on the aggressive side of a trade 
generally have lower price impact than PTF or dealer orders.  For the 5- and 10-year securities, self-trading 
generally has the highest price impact of all.   

The results for model M2b are interesting – and to our knowledge novel – in that they indicate that trades 
conducted with only PTFs on the passive, liquidity providing side have far higher price impact than those 
in which dealers provide liquidity.  Though the price impact estimates for PTFs are little changed from 
model M2a, the dealer price impact estimates in M2b are much lower.21  In addition, the price impact 
estimates for trades in which participants of many types are providing liquidity is effectively zero, and 
much lower than the corresponding estimates in model M2a.  Consistent with results for M2a, the price 
impact of trades for the residual of other firms in model M2b is effectively zero, and the price impact of 
self-trades is highest of all categories. 

In order to investigate these interactions in greater detail, our final model specification separates order 
flow pairwise by participant type, in the spirit of BHR (Brogaard, Hendershott and Riordan).  There are 
nine combinations of the three participant types in the data, creating nine order flow variables to which 
we can attribute price impact.  The vector of endogenous variables and the matrix of structural 
parameters for this model (M2c) are: 

 

                                                            
18 Table B4 in the appendix confirms that this difference is significant at the 5% level. 
19 In Figure 6 of CHZ, over the post-2011 period, HFT market orders, which roughly correspond to PTF market 
orders in our data, have slightly higher price impact than Bank-AT market orders, which roughly correspond to 
dealer market orders in our data. 
20 Table B4 in the appendix confirms that the PTF and Dealer price impact are significantly higher than the price 
impact for Other. 
21 Table B4 in the appendix confirms this. 
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𝑦𝑦𝑡𝑡 =  

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑟𝑟𝑡𝑡
𝑥𝑥𝑃𝑃𝑇𝑇𝑃𝑃→𝑃𝑃𝑇𝑇𝑃𝑃,𝑡𝑡

𝑥𝑥𝐷𝐷𝑜𝑜𝑝𝑝𝑚𝑚𝑜𝑜𝑝𝑝→𝐷𝐷𝑜𝑜𝑝𝑝𝑚𝑚𝑜𝑜𝑝𝑝,𝑡𝑡
𝑥𝑥𝑂𝑂𝑡𝑡ℎ𝑜𝑜𝑝𝑝→𝑂𝑂𝑡𝑡ℎ𝑜𝑜𝑝𝑝,𝑡𝑡
𝑥𝑥𝐷𝐷𝑜𝑜𝑝𝑝𝑚𝑚𝑜𝑜𝑝𝑝→𝑃𝑃𝑇𝑇𝑃𝑃,𝑡𝑡
𝑥𝑥𝑃𝑃𝑇𝑇𝑃𝑃→𝐷𝐷𝑜𝑜𝑝𝑝𝑚𝑚𝑜𝑜𝑝𝑝,𝑡𝑡
𝑥𝑥𝐷𝐷𝑜𝑜𝑝𝑝𝑚𝑚𝑜𝑜𝑝𝑝→𝑃𝑃𝑇𝑇𝑃𝑃,𝑡𝑡
𝑥𝑥𝑂𝑂𝑡𝑡ℎ𝑜𝑜𝑝𝑝→𝑃𝑃𝑇𝑇𝑃𝑃,𝑡𝑡
𝑥𝑥𝑃𝑃𝑇𝑇𝑃𝑃→𝑂𝑂𝑡𝑡ℎ𝑜𝑜𝑝𝑝,𝑡𝑡
𝑥𝑥𝐷𝐷𝑜𝑜𝑝𝑝𝑚𝑚𝑜𝑜𝑝𝑝→𝑂𝑂𝑡𝑡ℎ𝑜𝑜𝑝𝑝,𝑡𝑡
𝑥𝑥𝑂𝑂𝑡𝑡ℎ𝑜𝑜𝑝𝑝→𝐷𝐷𝑜𝑜𝑝𝑝𝑚𝑚𝑜𝑜𝑝𝑝,𝑡𝑡

𝑥𝑥𝑀𝑀𝑚𝑚𝑚𝑚𝑡𝑡𝑖𝑖,𝑡𝑡
𝑥𝑥𝑆𝑆𝑜𝑜𝑚𝑚𝑠𝑠,𝑡𝑡 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

 

 𝐴𝐴𝑇𝑇 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

1 0 0 0 0 0 0 0 0 0 0 0
−𝑎𝑎𝑃𝑃𝑇𝑇𝑃𝑃→𝑃𝑃𝑇𝑇𝑃𝑃 1 0 0 0 0 0 0 0 0 0 0

−𝑎𝑎𝐷𝐷𝑜𝑜𝑝𝑝𝑚𝑚𝑜𝑜𝑝𝑝→𝐷𝐷𝑜𝑜𝑝𝑝𝑚𝑚𝑜𝑜𝑝𝑝 0 1 0 0 0 0 0 0 0 0 0
−𝑎𝑎𝑂𝑂𝑡𝑡ℎ𝑜𝑜𝑝𝑝→𝑂𝑂𝑡𝑡ℎ𝑜𝑜𝑝𝑝 0 0 1 0 0 0 0 0 0 0 0
−𝑎𝑎𝐷𝐷𝑜𝑜𝑝𝑝𝑚𝑚𝑜𝑜𝑝𝑝→𝑃𝑃𝑇𝑇𝑃𝑃 0 0 0 1 0 0 0 0 0 0 0
−𝑎𝑎𝑃𝑃𝑇𝑇𝑃𝑃→𝐷𝐷𝑜𝑜𝑝𝑝𝑚𝑚𝑜𝑜𝑝𝑝 0 0 0 0 1 0 0 0 0 0 0
−𝑎𝑎𝑂𝑂𝑡𝑡ℎ𝑜𝑜𝑝𝑝→𝑃𝑃𝑇𝑇𝑃𝑃 0 0 0 0 0 1 0 0 0 0 0
−𝑎𝑎𝑃𝑃𝑇𝑇𝑃𝑃→𝑂𝑂𝑡𝑡ℎ𝑜𝑜𝑝𝑝 0 0 0 0 0 0 1 0 0 0 0
−𝑎𝑎𝐷𝐷𝑜𝑜𝑝𝑝𝑚𝑚𝑜𝑜𝑝𝑝→𝑂𝑂𝑡𝑡ℎ𝑜𝑜𝑝𝑝 0 0 0 0 0 0 0 1 0 0 0
−𝑎𝑎𝑂𝑂𝑡𝑡ℎ𝑜𝑜𝑝𝑝→𝐷𝐷𝑜𝑜𝑝𝑝𝑚𝑚𝑜𝑜𝑝𝑝 0 0 0 0 0 0 0 0 1 0 0

−𝑎𝑎𝑀𝑀𝑚𝑚𝑚𝑚𝑡𝑡𝑖𝑖 0 0 0 0 0 0 0 0 0 1 0
−𝑎𝑎𝑆𝑆𝑜𝑜𝑚𝑚𝑠𝑠 0 0 0 0 0 0 0 0 0 0 1⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

  (M2c) 

 

The subscripted 𝑥𝑥𝑖𝑖,𝑡𝑡 denote signed market order flow for each pairing of participant types i, where the 
arrow indicates the direction of aggression (the left is responsible for the aggressive market order and the 
right is the passive liquidity provider in the trade).  The nine variables for the participant pairs include only 
one-to-one trades, meaning that a trade by a PTF against a dealer is a trade by a single PTF firm on one 
side and a single dealer firm on the other.  Any trade with multiple parties on one or both sides, even if 
all parties are the same type, are included in the multi-party variable.  The self-trade variable is defined 
the same as it has been for all previous models. 

Table 5 below presents the frequency of these pairwise, multi-party and self-trade interactions in the data 
for the 10-year security.  All values are in percent, and the left entry is reported on a volume-weighted 
basis while the right is reported on a trade-count basis.  Most volume occurs in a multi-party format while 
most trades are either multi-party or PTF-to-PTF.  Trades in which PTFs provide liquidity also hold a high 
share of the total.  Dealer-to-dealer transactions are not very frequent and activity involving other residual 
firms is rare.  Values for the 5-year security are broadly consistent with the 10-year.  Values for the 30-
year security are weighted away from multi-party (31.6/15.5 percent on a volume-/trade-weighted basis) 
and PTF→ trades; and towards interactions including dealers, which reflects the higher overall share of 
one-to-one trades and dealer participation in this security. 
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Table 5: Frequency of Participant Type Interactions in Model M2c for the 10-year Security 

 Passive 
Aggressive PTF Dealer Other Multi Self 

PTF 13.5/30.0 6.5/11.5 0.2/0.3   
Dealer 14.3/21.9 3.2/4.4 0.1/0.1   
Other 0.2/0.4 0.1/0.1 0.0/0.0   
Multi    61.0/29.6  
Self     0.9/1.8 

 

Note: The table reports the frequency with which the order flow variables in model M2c are observed in the data for the 10-
year security.  All values in percent.  The entries to the left of slash are reported on a volume-weighted basis, while those on 
the right are reported on a trade-count basis.  

Source: Authors' calculations based on data from the Repo Interdealer Broker Community and FINRA TRACE 

Table 6 below displays price impact results (in basis points of par per $100 million) for model M2c for the 
5-, 10- and 30-year securities.  Confidence intervals are determined by bootstrap and values that are 
statistically significant at the 5% level are noted with an asterisk.  In addition to bootstrapping the 
confidence intervals for the price impact estimates, bootstrap tests of differences between price impact 
estimates for each pairing of the order flow types were conducted as well.  For the 10-year security all 
pairwise differences for interactions not involving an Other participant are significant at the 5%.  Detailed 
bootstrap results can be found in Appendix B, in Tables B6, B7a, B7b and B7c. 

Table 6: Price Impact of Trades for Model M2c 

 M2c 

Security 
PTF 
↓ 

PTF 

Dealer 
↓ 

Dealer 

Other 
↓ 

Other 

Dealer 
↓ 

PTF 

PTF 
↓ 

Dealer 

Other 
↓ 

PTF 

PTF 
↓ 

Other 

Dealer 
↓ 

Other 

Other 
↓ 

Dealer 
Multi Self 

5-year 5.70* 1.52* -1.28 4.40* 1.07 -4.42 3.39 0.01 1.34 1.14* 7.09* 
10-year 17.52* 4.83* 7.01 10.25* 3.09* 13.83* 7.30* 6.10* 3.12* 2.72* 15.95* 
30-year 42.02* 12.85* -4.99 33.00* 27.90* -4.85 -61.59* -11.88 49.06 15.56* 6.91 

 

Note: The table reports estimated permanent price impact of market orders, in basis points of par per $100 million, under 
model M2c, for trades in the 5-, 10- and 30-year securities executed on BrokerTec from April 15, 2019 to February 15, 2020.  
Confidence intervals are determined by bootstrap and values that are statistically significant at the 5% level are noted with 
asterisk.  The bootstrap results and standard errors are detailed in Appendix B, Table B6. 

Source: Authors' calculations based on data from the Repo Interdealer Broker Community and FINRA TRACE 

There is a great deal of information in Table 6 to digest, but upon careful consideration, a few facts stand 
out.  Judging from the collection of price impact estimates across the three securities that are statistically 
significant at the 5% level, the following hold22: 

 
- The price impact estimates for Dealer→PTF trades are higher than PTF→Dealer trades for all 

three securities.  

                                                            
22 What follows is largely confirmed, particularly for the 5-year and 10-year securities, by a bootstrap test of 
differences between estimated price impact values.  See Appendix B, Tables B7a, B7b and B7c for details. 
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- Price impact estimates for self-trades and trades in which a PTF is the passive liquidity provider 

(i.e. x→PTF) are strictly greater than all other interactions, for all three securities.  The price 
impacts of self-trades and PTF→PTF trades are particularly high. 
 

- Price impact estimates for multi-party trades are strictly lower than all other interactions for the 
5-year and 10-year securities, and for the 30-year security, the estimate is second to lowest. 
 

- After accounting for multi-party trades, price impact estimates for trades in which a dealer is the 
passive liquidity provider (i.e. x→Dealer) are strictly lower than all other interactions, for all 
three securities.  This point dovetails with the first point regarding Dealer→PTF and PTF→Dealer 
interactions. 

To help make all of this clearer, in the chart below, cumulative price impact for the 10-year security is 
plotted for the first 50 market order events.  It is evident that self-trading (red) has high price impact, 
while multi-party trades (black) have low price impact.  Furthermore, the price impacts of trades in which 
PTFs are the passive liquidity provider (green) are strictly higher than those in which dealers are the 
passive party (orange).  As annotated on the plot, the price impact of trades involving a dealer and another 
participant type (whether PTF or residual other firms) are higher when the dealer is the aggressive 
participant submitting the market order.23 

Of all the results for model M2c, those for the multi-party trades are easiest to explain.  It stands to reason 
that when many firms are party to a trade, particularly if they are of diverse types, the signal-to-noise 
ratio of the information embedded in the trade is lowered, relative to a trade between just two firms.  
Model M1b confirms this, even before we begin to consider firm types.  The other results of model M2c 
do not lend themselves so easily to interpretation, unfortunately, but in the following we provide some 
discussion. 

It was shown in model M2a that trades initiated by PTFs have slightly higher price impact than trades 
initiated by dealers.  In that model, no consideration was made for the passive counterparty type (i.e. the 
estimates are not conditioned on the type of liquidity provider).  In Figure 2 it becomes clear that the 
estimate for PTF price impact in model M2a was a combination really of two interactions.  The first is the 
interaction between PTFs and other PTFs, which has very high price impact, far above most of the other 
interactions.  The second interaction is when a PTF takes liquidity from a dealer, which has much lower 
price impact (only 1/6th that of the PTF→ interaction).  Looked at this way, we may re-interpret the results 
of models M2a and M2b to suggest that PTF trades have higher price impact when a PTF provides liquidity, 
and dealer trades have higher price impact when the dealer takes liquidity. 

What are we to make of this result?  We may consider this and other of the findings in this paper in light 
of theoretical results showing that informed traders tend to use more limit orders than market orders 
when their information advantage is small [Rosu 2020, Chaboud, Hjalmarsson and Zikes 2020].  Might it 
be that, when PTFs have an informational advantage over dealers it is relatively small (and transient?) and 

                                                            
23 This is confirmed by a bootstrap test of differences between estimated price impact values.  See Appendix B, 
Table B7b for details.  
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expressed by means of a limit order?  If this is the case, we may interpret (aggressive) market order activity 
by PTFs as an expression of no informational advantage.  Perhaps our results are an indication that PTFs 
use limit orders to enter positions (i.e. to take risk when in possession of information) and market orders 
to cut positions (i.e. manage risk down when not in possession of information).24 

Figure 2: Cumulative Price Impact for the 10-year Security, Model M2c 

 
Note: The figure shows estimated cumulative price impact for the first 50 market order events, for the 10-year security, for 
each variable under model M2c, for trades executed on BrokerTec from April 15, 2019 to February 15, 2020.  Values are 
reported in basis points of par per $100 million.  All estimates are statistically significant at the 5% level at the terminal 
horizon. We confirm that these estimates are statistically significant at the 5% level using bootstrap estimation with 1000 
iterations. 

Source: Authors' calculations based on data from the Repo Interdealer Broker Community and FINRA TRACE 

And what of the dealers?  We may posit that, when dealers possess informational advantage it is relatively 
large, vis-à-vis PTFs.  If this is the case, theory [Rosu 2020] would suggest market orders would be 
preferred to limit orders, and also that dealer market orders would have higher price impact over time 
than limit orders.  In contrast to PTFs, perhaps (aggressive) market order activity by dealers is an 
expression of considerable informational advantage (such as that derived from observing client order 

                                                            
24 Anecdotally, PTFs are thought to implement relatively tight limits on the directional market risk taken at any 
point in time.  Furthermore, it is generally believed that they will not carry Treasury positions overnight, and will 
seek to close out all positions before the end every trading day. 
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flow), rather than no information advantage.  As some tangential support for these ideas, in Table 2 we 
showed that PTF trading is skewed towards liquidity provision (limit orders) while dealer trading is skewed 
toward consumption (market orders). 

It is not possible for us to test these hypotheses with the data available to us.  We may still ponder the 
sources of the disparate informational advantages.  We believe that market segmentation begins to 
explain the differences we see.  Lyons (1995) and others established, prior to the emergence of PTFs, that 
the order flow dealers are able observe from clients is a source of private information, and we offer this 
as some support for our assertions regarding dealers above.  PTFs are forbidden by regulation from having 
customers, and so client order flow is not a source of information available to them. 

The exact mechanism by which PTFs may obtain private information has not yet been studied, at least 
that we are aware.  We posit that PTF holdings of microwave network assets linking trading venues 
throughout New York and Chicago are a likely source.  As emphasized by O’Hara (2015), speed of trading 
is tantamount to informational advantage in modern financial markets, and microwave communications 
networks confer the advantage of speed across geographically distant financial centers in ways that no 
other technology can.  To our knowledge, all of the microwave networks catering to financial services 
applications in the US were built by, and are still owned by several of the major PTFs that are the subject 
of this paper.  As a result, PTFs are able to maintain a speed advantage, and hence a (small, transient) 
informational advantage over dealers. 

In closing this section, we address the issue of self-trading.  In model M1b we showed that self-trades 
have higher price impact than either one-to-one or multiparty trades.  The results of model M2c are largely 
consistent with this result.  Furthermore, the results of model M2c are also internally consistent; because 
PTFs comprise the vast majority of self-trade volume, it stands to reason that self-trades have high price 
impact, if PTF→PTF trades also have high price impact.  We’ll also point out that, according to the 
bootstrap results in Tables B7a, B7b and B7c in the appendix, self-trades do not have significantly different 
price impact than PTF→PTF trades for the 5- and 30-year securities and self-trades have slightly lower 
price impact than PTF→PTF trades for the 10-year security.  So long as we are able to maintain that the 
PTF firms conducting self-trades implement truly independent trading algorithms - each possessing no 
private information on the order activity of its other algorithms both before and after self-trades are 
conducted - then we may conclude that self-trades are an innocuous sub-category of PTF→PTF trades.  

In the next section, we present an analysis of events that occurred in Treasury markets in March 2020, 
during the onset of the COVID-19 pandemic, using model M2c. 

5 LIQUIDITY CONDITIONS IN TREASURY MARKETS DURING MARCH 2020 
 

The previous section presents evidence that the trades of dealers and PTFs have dissimilar price impact, 
and furthermore that the direction of interaction matters.  To make clear the effect that this can have on 
liquidity conditions, consider Figure 2 from the vantage of a dealer that has just acquired a large inventory 
in the 10-year security from a client.  If the dealer seeks to distribute the position to the market via an IDB 
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platform, and hopes to minimize price impact,25 there is a clear ordering of preferences.  The dealer would 
seek to trade in a multi-party format or at least with other dealers, to the extent that it can, and would 
seek to avoid (also to the extent that it can) aggressing the limit orders of PTFs.  Considering Figure 2 from 
the vantage of a PTF trading the cash/futures basis and attempting to hedge a position in the 10-year 
future or a similar security via an IDB platform, a different schedule of preferences becomes clear. 

In this section, we use model M2c to analyze the events that occurred in Treasury markets during March 
2020, in order to add some color to the results presented in the previous section.  After presenting mainly 
the facts of what occurred, according to our model, we offer some light interpretation. 

Beginning in early March 2020, as the global onset of the COVID-19 pandemic accelerated, realized yield 
volatility on the BrokerTec platform rose quickly, exceeding 300 basis points per year for the 10-year 
security and surpassing short term implied volatility as measured by the MOVE Index and 1-month into 
10-year dollar swaption volatility.  At the same time, bid-ask spreads on the BrokerTec platform increased, 
nearly doubling for the 10-year security and more than doubling for the 30-year security [Fleming, Ruela 
2020].  Importantly - where the following analysis is concerned - market depth, as measured by the daily 
average of the total quantities bid and offered in the first five levels of the limit order book, fell to levels 
far below those observed in January 2020, particularly for the 5- and 10-year securities. 

Against this backdrop, daily trading volumes on the BrokerTec platform hit record highs in early March.  
Then, on March 12th the PTF share of overall participation (whether in one-to-one or multi-party trades) 
fell noticeably.  Whereas PTFs typically account for 60% of average daily volume (Table 2), the dealer share 
of volume began to exceed that of PTFs and this remained the case for the remainder of the month.  Table 
5 above displayed the frequency of each of the participant-type interactions in model M2c for the 10-year 
security between April 15, 2019 and February 15, 2020.  In Figure 3 below the same quantities are plotted 
as a time series over the first five months of 2020, alongside market depth, to show how they evolved 
over the course of March. 

As seen in Figure 3, beginning in late February, as market depth fell, so too did the share of multi-party 
trade matches (red line).  On February 28th the multi-party share fell below 50% and continued to fall over 
the course of March, reaching a low on March 20th at about half of its January average.  Though daily 
volume in the 10-year security (not shown) peaked on March 3rd at $100 billion, by mid-March volumes 
were not much different than their 5-month average of $40 billion per day.  This fall in the share of volume 
traded in a multi-party format, alongside a fall in market depth conforms to our intuition.  As market 
participants submitted fewer limit orders to the BrokerTec platform as volatility rose, presumably for the 
purpose of managing risk in volatile markets and avoiding adverse selection, it became more likely that 
only one participant’s bid or offer rested at the top level of the order book at any given time.  As such, 
market orders submitted to the book were more likely to be matched against the limit order of only a 
single participant.  Perhaps as a result, the average size of multi-party trades fell in tandem with the multi-
party share of activity, from $5.4 million in January to a low of $3.3 million on March 23rd. 

Turning to the other interactions, the share of Dealer→PTF activity in Figure 3 (black line) is notable for 
the degree to which it rose in March 2020, effectively doubling its January level.  As mentioned above, 
daily volumes on the BrokerTec platform were historically high in March, but the 10-year security volume 
peaked on the 3rd before returning nearer average levels on the 23rd, when the share of multi-party activity 
                                                            
25 Which is tantamount to maximizing profits in its client market making business. 
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hit its low and Dealer→PTF matching peaked.  The PTF→Dealer and Dealer→Dealer share of activity also 
rose over this period, though not as much as the share PTF→Dealer activity.26  Like the multi-party share 
of activity, however, the share of PTF→PTF activity actually fell from January 1st to March 23rd, but not 
before rising notably in the early part of March.   

Figure 3: Frequency of Participant Type Interactions for the 10-year Security in March 2020 

 
Note: The figure shows the frequency with which the order flow variables in model M2c, on a volume-weighted basis, are 
observed in the data for the 10-year security for the first five months of 2020.  All values in percent.  Market depth, as 
measured by the daily, time-weighted average of the 5-level depth of both sides of the order book is plotted on the right-
hand side.  

Source: Authors' calculations based on data from the Repo Interdealer Broker Community and FINRA TRACE 

These latter observations do not neatly conform to intuition.  If the shares of all four pairwise interactions 
between dealers and PTFs had moved in the same direction, even while multi-party activity fell, we might 
attribute the phenomena observed in Figure 3 wholly to the reduced market depth and randomness in 
the matching of limit and market orders as they arrived to the limit order book.  It is difficult to square the 
change in PTF→PTF activity with this hypothesis, however.  We do know that the overall PTF share of 
activity in March fell noticeably on March 12th, and was surpassed by that of dealers.  Figure 3 further 

                                                            
26 The PTF→Dealer and Dealer→Dealer share of activity did rise in roughly similar proportion (relative to January 
levels) as the Dealer→PTF share of activity. 
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suggests that the fall in the PTF share of activity was actually a combination of 1) a fall in their share of 
participation in multi-party and PTF→PTF activity and 2) a rise in PTF→Dealer and Dealer→PTF activity.  
Mindful that our setting is the anonymous limit order book setting,27 we posit two possible explanations 
for this: 

- PTFs have developed some ability to form expectations about the class of firm associated with 
each limit order in the limit order book.  Furthermore, they found multi-party and PTF→PTF 
interactions disadvantageous (or more “toxic”) in March relative to normal times and sought to 
avoid those interactions. 
 

- One or multiple large PTFs that account for a large proportion of multi-party and/or PTF→PTF 
activity in normal times reduced their aggregated activity in March.  In other words, a PTF or PTFs 
with a high degree of network centrality (in a graph characterized by market order flow) withdrew 
from the market as liquidity conditions deteriorated. 

Considering next the dealers, we observe also in Figure 3 that the share of Dealer→Dealer interactions, 
and more generally all interactions involving a dealer, rose in March, which is consistent with the fact 
that the dealer share of overall activity surpassed that of PTFs after March 12th.  This fact is likely a 
consequence of the large volumes that dealers intermediated for clients in March 2020.  According to 
Federal Reserve Bank of New York data,28 primary dealer transactions with clients recorded their historic 
high on the week ended March 4th.  Anecdotally this activity was very heavily weighted towards client 
sales of securities to dealers, which is also supported by Federal Reserve Bank of New York data showing 
that primary dealer net positions in Treasury securities rose to very high levels, peaking on the week 
ended March 18th near their historical high.  The scale of these sales was ultimately more than the 
primary dealers could intermediate, due to the aggregate balance sheet constraint imposed by banking 
regulation, and as a result the Treasury markets began to show considerable strain by March 13th 
[Duffie, 2020].   

The Federal Reserve began to intervene in Treasury markets on March 16th, purchasing Treasury 
securities from the primary dealers in order to stabilize markets.  In the period between late February, 
when the client sales seemingly began, and March 15th when the Federal Reserve first announced its 
intention to purchase Treasuries, it is likely that the primary dealers attempted to distribute or hedge 
the inventory acquired from clients by means of trading on IDB platforms like BrokerTec.  Though 
Federal Reserve purchases of coupon securities began on March 16th, they were initially subject to a soft 
target of “at least $500 billion.”  Throughout the week of March 16th, liquidity conditions in Treasury 
markets remained strained, however and so on March 23rd, the Federal Reserve made an extraordinary 
announcement that it would purchase Treasury securities in “the amounts needed” to restore market 
function.  It is after this date that we see in Figure 3 the participant-type shares begin to return to their 
pre-March levels. 

Now we consider liquidity conditions, as measured by the price impact of trades on the BrokerTec 
platform in March 2020, using model M2c and a sample that begins on March 1st and ends on March 31st.  

                                                            
27 Meaning participants do not know the identities of the other firms submitting limit and market order to the 
platform. 
28 Primary Dealer Statistics 

https://www.federalreserve.gov/newsevents/pressreleases/monetary20200315a.htm
https://www.federalreserve.gov/newsevents/pressreleases/monetary20200323a.htm
https://www.newyorkfed.org/markets/gsds/search.html


20 
 

It should come as no surprise that the price impact of trades rose greatly in March, and for all of the 
various participant-type interactions.  Table 7 below displays price impact estimates for the 10-year 
security under Model M2c in March 2020.  The first column repeats values found in Table 6, estimated 
using a sample covering the period from April 15, 2019 to February 15, 2020, which we include for ease 
of comparison.  The values in parenthesis in the first column are the asymptotic standard errors of the 
price impact estimate (which are fairly close to the bootstrap estimates presented in Appendix B).  The 
second column shows the price impact estimates using the March 2020 sample.  The third and fourth 
columns display the relative and absolute change in the price impact estimates from the first to the second 
period.  The final column, labeled z-score, is computed as the absolute change in the price impact estimate 
from the first to the second period divided by the standard error of the price impact estimate for the first 
period.29 

Table 7: Price Impact of Trades for the 10-year Security under Model M2c in March 2020 

 April 15, 2019 – 
February 15, 2020 March 2020 Change Change Z-Score 

Interaction Price Impact (SE) Price Impact Relative Absolute  
PTF→PTF 17.52 (0.13) 28.26 +61% 10.74 83.4 

Dealer→Dealer 4.83 (0.10) 7.48 +55% 2.65 26.7 
Dealer→PTF 10.25 (0.08) 21.55 +110% 11.30 143.6 
PTF→Dealer 3.09 (0.11) 8.60 +178% 5.51 49.1 

Multi 2.72 (0.02) 5.73 +110% 3.01 185.4 
Self 15.95 (0.31) 15.56 -2% -0.39 -1.3 

 

Note: The table shows estimated permanent price impact of market orders, in basis points of par per $100 million, under 
model M2c, for trades in 10-year securities executed on BrokerTec over two periods: 1) from April 15, 2019 to February 15, 
2020, and 2) from March 1, 2020 to March 31, 2020.  Asymptotic standard errors for the first period price impact estimates 
are shown in parenthesis in the first column.  The z-score is computed as the change in the price impact estimate from 
period 1 to 2 divided by the standard error of the price impact estimate for the first period. 

Source: Authors' calculations based on data from the Repo Interdealer Broker Community and FINRA TRACE 

The z-score for the multi-party trades is highest of all of the interactions, which underscores the high 
degree to which the price impact of these trades increased in March, more than doubling its pre-March 
value.  Perhaps not coincidentally the share of multi-party activity in March fell the most of all the 
interactions too.  Second only to the multi-party trades, the z-score of Dealer→PTF trades rose greatly 
too, also doubling its pre-March value.  In contrast, the price impact of self-trades did not change at all 
and remained roughly the same over the two periods.  In between these two extremes, the price impact 
of PTF→PTF trades rose greatly in absolute terms, but from an already high level.   

We offer several final explanations for the changes in price impact observed in March.  Regarding the 
multi-party trades, it seems natural that their price impact would rise; these trades likely began to 
resemble the pairwise “one-to-one” PTF/dealer trades more closely as market depth and average trade 
size declined.  We may interpret the Dealer→PTF interaction and its increased price impact as some 
evidence that the relative price advantage of dealers became large during March, as a result of their 

                                                            
29 We considered implementing a break test, but leave this to future work.  Clearly a break occurred in March 
2020.  The z-score metric is an attempt to quantify the size of the break for each trade type. 
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exclusive access to information on client flows.  This would be consistent with discussion at the end of the 
previous section. 

6 CONCLUSION 
 

We use Treasury cash transaction reports from TRACE and publicly available limit order book data from 
BrokerTec to investigate whether the trades of registered dealers and (unregistered) principal trading 
firms (PTFs) have dissimilar price impact.  We find that, ceteris paribus, trades have higher permanent 
price impact when a PTF is the passive party, playing the role of liquidity provider.  Conversely, we find 
that dealer trades have higher price impact when the dealer is the aggressive party and taking liquidity 
from the platform.  Furthermore, trades in which both the buyer and seller are PTFs have very high price 
impact, while trades between two dealers have low price impact.  In between all of these extremes, trades 
that are matched with multiple firms (whether dealer or PTF) on one or both sides have very low price 
impact.  We also find that, during periods of acute market stress, like that in March 2020, the amount of 
trades that are matched with multiple firms on one or both sides falls greatly as market depth declines.  
Furthermore, though the price impact of all trades rises greatly during these periods, the increase for 
these trades stands out for its magnitude. 
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APPENDIX 

A - MERGING THE TRACE TREASURY AND BROKERTEC LEVEL I DATASETS 
 

Matching TRACE Trade Reports 

For trades with only one buyer and/or only one seller, matching TRACE trade reports and assigning one-
to-one correspondence between buyer and seller is generally straightforward.  Small, but very 
surmountable difficulties can arise when the price reported for the buyer does not match the price 
reported for the seller.  This discrepancy arises because BrokerTec includes the brokerage/margin it 
receives from each party in the prices reported to TRACE.30  Because 1) the trades are timestamped to 
the microsecond and multiple trades will not occur in the same microsecond and 2) we have access to 
the brokerage-free price at which all trades were transacted in the Level I order book data available to 
us, this issue does not materially affect the analysis. 

Some trades conducted on BrokerTec can have multiple buyers and/or sellers, which presents more 
difficulty when attempting to match trades reports.  This occurs in two ways.  First, if a market order to 
buy/sell is matched with more than one limit order to sell/buy, BrokerTec will report multiple trades: 
one between BrokerTec and the submitter of the market order to buy/sell, and then multiple trades 
between BrokerTec and the submitters of the limit orders to sell/buy that were completely or partially 
filled.  Though this complicates the report-matching algorithm, in this case it still is possible to assign 
one-to-one correspondence between buyer and seller in the trade.   

The second way in which BrokerTec trades can have multiple buyers and/or sellers arises from the 
workup feature available on the platform.31  When trades occur in a workup, multiple buyers and 
multiple sellers can be matched together in the same trade, requiring BrokerTec to report multiple 
trades on both sides of the transaction with the same timestamp and price (subject to brokerage).  In 
this case it is not possible to establish one-to-one correspondence between buyer and seller in the trade 
reports and we randomly assign counterparties in our report matching algorithm, breaking partial 
matches into multiple line-items if need be.  The models presented in Section 4 were constructed in 
ways that make this detail irrelevant, as none relies on an accurate correspondence between buyer and 
seller in trades with more than one party on either side. 

                                                            
30 For example, if a trade is conducted at a price of 100.00, BrokerTec may report the buyer’s price as 100.01 and 
the seller’s price as 99.98, suggesting that the buyer has payed margin equivalent of 0.01 percent of par to conduct 
the trade, and the seller has payed margin equivalent 0.02 percent of par to conduct the trade.  BrokerTec, and all 
Treasury IDBs, negotiate margin rates bilaterally with all clients, so not all clients pay the same rates.  Furthermore, 
the negotiated schedules may be written as per-trade rates subject to fixed monthly maximum amounts.  This 
means that some trades for some firms will not have any margin reported after their monthly maximum is 
exceeded.  We contend with this issue by reference to the executed trade prices that BrokerTec reports itself in 
the Level I dataset, which does not include the margin amounts but only the actual trade price that was executed 
in the matching engine. 
31 For more background on workups, see Liberty Street Economics, “The Evolution of Workups in the U.S. Treasury 
Securities Market”. 

https://libertystreeteconomics.newyorkfed.org/2015/08/the-evolution-of-workups-in-the-us-treasury-securities-market.html
https://libertystreeteconomics.newyorkfed.org/2015/08/the-evolution-of-workups-in-the-us-treasury-securities-market.html
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Joining the BrokerTec Level I Data on TRACE 

As mentioned in section 3, the time series of transactions implied by the TRACE data is joined on the 
BrokerTec Level I data using a fuzzy matching algorithm.  The join is not exact for several reasons:  

- The trade timestamps for a given trade rarely match perfectly 
- The TRACE prices are reported with brokerage while BrokerTec Level I data is reported without 
- Some trades appearing in the BrokerTec data do not appear in the TRACE data 

We exploit the fact that the trade timestamps are generally within 100 microseconds of each other in 
implementing the join.  The join is implemented by iterative search, where the tolerances for matching by 
trade timestamp, price and volume are gradually relaxed until all trades have been joined. 
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B – BOOTSTRAP RESULTS AND CONFIDENCE INTERVALS 
 

Confidence intervals for all price-impact estimates and differences between price impact estimates were 
calculated via a bootstrap, using 1000 samples, as presented by Runkle (1987) and used in FMN.  Here 
we present the detailed results of that exercise. 

Table B1: Bootstrap Confidence Intervals for M1a and M1b 

5-year M1a M1b 
 All Trades One-to-one Multi-party Self-trades 

Price Impact Estimate 1.27 3.33 1.13 6.86 

SE (Asymptotic) 0.20 0.63 0.19 3.78 

Bootstrap - 5%-ile 0.96 2.42 0.84 2.33 

Bootstrap - 16%-ile 1.10 2.76 0.98 4.42 

Bootstrap Median 1.28 3.35 1.13 6.96 

Bootstrap - 84%-ile 1.46 3.95 1.31 9.21 

Bootstrap - 95%-ile 1.60 4.41 1.45 11.76 
 

10-year M1a M1b 
 All Trades One-to-one Multi-party Self-trades 

Price Impact Estimate 2.89 9.32 2.66 15.20 

SE (Asymptotic) 0.02 0.06 0.02 0.31 

Bootstrap - 5%-ile 2.87 9.22 2.64 14.69 

Bootstrap - 16%-ile 2.88 9.26 2.65 14.88 

Bootstrap Median 2.89 9.32 2.66 15.19 

Bootstrap - 84%-ile 2.91 9.39 2.68 15.52 

Bootstrap - 95%-ile 2.92 9.42 2.69 15.72 
 

30-year M1a M1b 
 All Trades One-to-one Multi-party Self-trades 

Price Impact Estimate 19.78 28.32 15.63 7.35 

SE (Asymptotic) 1.81 3.13 1.85 24.22 

Bootstrap - 5%-ile 16.58 23.07 12.55 -29.55 

Bootstrap - 16%-ile 17.92 25.12 13.89 -14.82 

Bootstrap Median 19.78 28.01 15.68 6.83 

Bootstrap - 84%-ile 21.48 31.05 17.32 27.33 

Bootstrap - 95%-ile 22.55 33.76 18.68 40.39 

 

Note: The table reports the results of a bootstrap of the estimated value of the permanent price impact of market orders, in 
basis points of par per $100 million, under model M1a and M1b, for trades in the 5-, 10- and 30-year securities executed on 
BrokerTec from April 15, 2019 to February 15, 2020.  The price impact estimates reported in the text, the asymptotic 
standard errors of the estimates and the 5, 16, 50, 84 and 95th percentiles of the bootstrap distribution of the parameter 
estimates are shown. 

Source: Authors' calculations based on data from the Repo Interdealer Broker Community and FINRA TRACE 
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Table B2: Bootstrap Confidence Intervals for Differences between Price Impact Estimates for M1b 

5-year Multi-party Self-trades 

One-to-one 2.23 (1.33/3.15) -3.61 (-8.08/1.09) 

Multi-party  -5.84 (-10.54/-1.21) 
 

10-year Multi-party Self-trades 

One-to-one 6.66 (6.56/6.74) -5.87 (-6.39/-5.38) 

Multi-party  -12.53 (-13.05/-12.02) 
 

30-year Multi-party Self-trades 

One-to-one 12.50 (7.58/17.82) 21.09 (-11.50/56.94) 

Multi-party  8.80 (-24.93/44.52) 

 

Note: The table reports the results of a bootstrap of the differences between the estimated values of the permanent price 
impact of market orders, in basis points of par per $100 million, under model M1b, for trades in the 5-, 10- and 30-year 
securities executed on BrokerTec from April 15, 2019 to February 15, 2020.  The matrices are ordered “row minus column.”  
The first value is the bootstrap median of the difference in the price impact, and within the parentheses, the 5th and 95th 
percentiles of the price impact difference distribution are shown. 

Source: Authors' calculations based on data from the Repo Interdealer Broker Community and FINRA TRACE 

  



28 
 

Table B3: Bootstrap Confidence Intervals for M2a and M2b 

5-year M2a (Aggressive) M2b (Passive) 

 PTF Dealer Other Multi Self PTF Dealer Other Multi Self 

Price Impact Estimate 1.64 1.99 -0.93 0.95 6.51 2.19 0.67 0.84 (0.12) 6.30 

SE (Asymptotic) 0.48 0.43 4.07 0.18 3.78 0.32 0.21 2.40 0.49 3.77 

Bootstrap - 5%-ile 0.89 1.30 -4.31 0.66 0.69 1.68 0.35 (0.76) (0.73) 1.24 

Bootstrap - 16%-ile 1.19 1.63 -1.73 0.80 3.61 1.91 0.51 0.48 (0.35) 3.63 

Bootstrap Median 1.61 1.98 -0.92 0.94 6.54 2.18 0.67 0.84 (0.12) 6.24 

Bootstrap - 84%-ile 2.02 2.37 0.00 1.07 9.03 2.46 0.83 1.31 0.13 8.96 

Bootstrap - 95%-ile 2.33 2.68 2.91 1.20 11.40 2.68 0.96 2.81 0.47 11.20 

 

10-year M2a (Aggressive) M2b (Passive) 

 PTF Dealer Other Multi Self PTF Dealer Other Multi Self 

Price Impact Estimate 4.91 4.35 3.49 2.13 14.27 4.92 1.68 2.68 (0.86) 13.44 

SE (Asymptotic) 0.04 0.04 0.30 0.02 0.31 0.03 0.02 0.17 0.04 0.30 

Bootstrap - 5%-ile 4.84 4.29 3.00 2.10 13.73 4.88 1.65 2.40 (0.93) 12.97 

Bootstrap - 16%-ile 4.87 4.32 3.19 2.11 13.94 4.90 1.66 2.50 (0.90) 13.16 

Bootstrap Median 4.91 4.35 3.49 2.13 14.26 4.93 1.68 2.67 (0.86) 13.45 

Bootstrap - 84%-ile 4.95 4.39 3.78 2.14 14.56 4.95 1.69 2.85 (0.82) 13.75 

Bootstrap - 95%-ile 4.98 4.41 3.98 2.15 14.75 4.97 1.70 2.96 (0.79) 13.93 

 

30-year M2a (Aggressive) M2b (Passive) 

 PTF Dealer Other Multi Self PTF Dealer Other Multi Self 

Price Impact Estimate 26.84 21.91 12.21 11.61 6.44 28.44 13.49 (4.26) (5.06) 5.04 

SE (Asymptotic) 3.81 2.80 18.39 2.19 24.21 2.69 2.25 13.26 6.10 24.20 

Bootstrap - 5%-ile 20.55 17.15 -15.68 7.96 -36.52 23.87 9.87 (26.38) (12.51) (32.15) 

Bootstrap - 16%-ile 23.06 19.07 -2.65 9.48 -16.95 25.65 11.46 (15.33) (8.15) (17.69) 

Bootstrap Median 26.88 21.72 12.21 11.50 6.64 28.34 13.67 (4.31) (5.13) 4.31 

Bootstrap - 84%-ile 30.64 24.43 27.01 13.56 27.93 31.15 15.61 5.47 (1.92) 26.56 

Bootstrap - 95%-ile 33.22 26.19 41.16 14.96 44.35 32.91 17.32 14.48 2.64 41.63 

 

Note: The table reports the results of a bootstrap of the estimated value of the permanent price impact of market orders, in 
basis points of par per $100 million, under model M2a and M2b, for trades in the 5-, 10- and 30-year securities executed on 
BrokerTec from April 15, 2019 to February 15, 2020.  The price impact estimates reported in the text, the asymptotic 
standard errors of the estimates and the 5, 16, 50, 84 and 95th percentiles of the bootstrap distribution of the parameter 
estimates are shown. 

Source: Authors' calculations based on data from the Repo Interdealer Broker Community and FINRA TRACE 
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Table B4: Bootstrap Confidence Intervals for Differences between Price Impact Estimates for M2a 

5-year Dealer Other Multi Self 
PTF -0.37 (-1.28/0.51) 2.53 (-1.24/5.67) 0.67 (0.00/1.38) -4.90 (-9.73/0.78) 

Dealer  2.92 (-1.11/6.30) 1.04 (0.40/1.73) -4.55 (-9.54/1.00) 
Other   -1.85 (-5.15/2.02) -7.43 (-14.34/0.27) 
Multi    -5.59 (-10.37/0.21) 

 
10-year Dealer Other Multi Self 

PTF 0.56 (0.48/0.64) 1.42 (0.93/1.91) 2.78 (2.72/2.85) -9.36 (-9.84/-8.83) 
Dealer  0.86 (0.37/1.36) 2.22 (2.17/2.29) -9.92 (-10.39/-9.39) 
Other   1.37 (0.87/1.86) -10.75 (-11.46/-10.02) 
Multi    -12.14 (-12.63/-11.61) 

 
30-year Dealer Other Multi Self 

PTF 5.04 (-2.30/12.76) 14.89 (-14.57/43.13) 15.05 (8.70/22.32) 19.78 (-17.58/63.24) 
Dealer  9.56 (-20.24/37.82) 10.19 (4.61/15.72) 15.10 (-22.84/58.15) 
Other   0.83 (-27.07/30.97) 5.21 (-43.96/56.09) 
Multi    4.93 (-32.04/48.13) 

 

Note: The table reports the results of a bootstrap of the differences between the estimated values of the permanent price 
impact of market orders, in basis points of par per $100 million, under model M2a, for trades in the 5-, 10- and 30-year 
securities executed on BrokerTec from April 15, 2019 to February 15, 2020.  The matrices are ordered “row minus column.”  
The first value is the bootstrap median of the difference in the price impact, and within the parentheses, the 5th and 95th 
percentiles of the price impact difference distribution are shown. 

Source: Authors' calculations based on data from the Repo Interdealer Broker Community and FINRA TRACE 

Table B5: Bootstrap Confidence Intervals for Differences between Price Impact Estimates for M2b 

5-year Dealer Other Multi Self 
PTF 1.51 (0.98/2.05) 1.32 (-0.61/2.94) 2.31 (1.50/3.07) -4.02 (-8.92/0.81) 

Dealer  -0.17 (-2.07/1.37) 0.80 (0.07/1.47) -5.55 (-10.47/-0.58) 
Other   0.97 (-0.82/3.23) -5.30 (-10.79/0.83) 
Multi    -6.36 (-11.47/-1.14) 

 
10-year Dealer Other Multi Self 

PTF 3.25 (3.20/3.30) 2.25 (1.96/2.53) 5.78 (5.71/5.86) -8.52 (-9.01/-8.05) 
Dealer  -1.00 (-1.29/-0.71) 2.54 (2.46/2.61) -11.77 (-12.26/-11.29) 
Other   3.53 (3.24/3.83) -10.78 (-11.30/-10.23) 
Multi    -14.31 (-14.78/-13.83) 

 
30-year Dealer Other Multi Self 

PTF 14.63 (9.26/20.28) 32.37 (14.27/53.94) 33.54 (24.50/42.46) 23.92 (-12.75/60.49) 
Dealer  17.90 (-1.67/39.88) 18.83 (9.46/27.68) 8.90 (-27.82/45.24) 
Other   0.94 (-21.79/21.94) -8.31 (-53.87/30.39) 
Multi    -9.69 (-46.72/29.52) 

 

Note: The table reports the results of a bootstrap of the differences between the estimated values of the permanent price 
impact of market orders, in basis points of par per $100 million, under model M2a, for trades in the 5-, 10- and 30-year 
securities executed on BrokerTec from April 15, 2019 to February 15, 2020.  The matrices are ordered “row minus column.”  
The first value is the bootstrap median of the difference in price impact, and within the parentheses, the 5th and 95th 
percentiles of the price impact difference distribution are shown. 

Source: Authors' calculations based on data from the Repo Interdealer Broker Community and FINRA TRACE 
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Table B6: Bootstrap Confidence Intervals for M2c 

5-year 
PTF 
↓ 

PTF 

Dealer 
↓ 

Dealer 

Other 
↓ 

Other 

Dealer 
↓ 

PTF 

PTF 
↓ 

Dealer 

Other 
↓ 

PTF 

PTF 
↓ 

Other 

Dealer 
↓ 

Other 

Other 
↓ 

Dealer 
Multi Self 

Price Impact 
Estimate 5.70 1.52 -1.28 4.40 1.07 -4.42 3.39 0.01 1.34 1.14 7.09 

SE (Asymptotic) 1.37 0.89 80.63 0.88 1.16 7.31 11.11 9.54 9.09 0.19 3.80 
Bootstrap - 5%-ile 3.64 0.24 -8.44 3.11 -0.68 -11.02 -4.95 -3.67 -0.85 0.84 2.02 

Bootstrap - 16%-ile 4.49 0.93 -5.16 3.63 0.15 -5.84 2.03 -0.89 0.52 0.98 4.59 
Bootstrap Median 5.73 1.50 -1.27 4.38 1.08 -4.42 3.37 -0.03 1.36 1.15 7.07 
Bootstrap - 84%-ile 7.00 2.04 3.00 5.17 1.92 -2.64 4.57 0.81 2.17 1.31 9.71 
Bootstrap - 95%-ile 8.00 2.55 7.30 5.76 2.84 3.70 7.88 2.74 3.91 1.45 12.88 

            

10-year 
PTF 
↓ 

PTF 

Dealer 
↓ 

Dealer 

Other 
↓ 

Other 

Dealer 
↓ 

PTF 

PTF 
↓ 

Dealer 

Other 
↓ 

PTF 

PTF 
↓ 

Other 

Dealer 
↓ 

Other 

Other 
↓ 

Dealer 
Multi Self 

Price Impact 
Estimate 17.52 4.83 7.01 10.25 3.09 13.83 7.30 6.10 3.12 2.72 15.95 

SE (Asymptotic) 0.13 0.10 8.87 0.08 0.11 0.59 0.70 0.78 0.94 0.02 0.31 
Bootstrap - 5%-ile 17.30 4.65 -7.92 10.12 2.90 12.94 6.16 4.81 1.49 2.69 15.46 

Bootstrap - 16%-ile 17.40 4.73 -2.18 10.18 2.97 13.32 6.60 5.29 2.14 2.71 15.65 
Bootstrap Median 17.52 4.83 6.65 10.25 3.08 13.88 7.32 6.10 3.03 2.72 15.95 
Bootstrap - 84%-ile 17.64 4.93 15.61 10.33 3.20 14.46 8.02 6.86 4.02 2.74 16.27 
Bootstrap - 95%-ile 17.73 4.98 21.74 10.38 3.27 14.87 8.46 7.28 4.64 2.75 16.48 

            

30-year 
PTF 
↓ 

PTF 

Dealer 
↓ 

Dealer 

Other 
↓ 

Other 

Dealer 
↓ 

PTF 

PTF 
↓ 

Dealer 

Other 
↓ 

PTF 

PTF 
↓ 

Other 

Dealer 
↓ 

Other 

Other 
↓ 

Dealer 
Multi Self 

Price Impact 
Estimate 42.02 12.85 -4.99 33.00 27.90 -4.85 -61.59 -11.88 49.06 15.56 6.91 

SE (Asymptotic) 6.43 5.11 275.20 4.53 6.82 24.95 36.03 32.98 37.49 1.86 24.22 
Bootstrap - 5%-ile 31.84 4.33 -47.71 25.25 16.83 -47.23 -121.44 -61.26 -15.48 12.57 -33.29 

Bootstrap - 16%-ile 35.61 7.81 -28.63 28.23 21.30 -27.57 -92.53 -28.32 26.10 13.68 -16.75 
Bootstrap Median 41.72 12.78 -5.32 33.09 27.56 -4.06 -61.81 -11.44 48.97 15.54 7.24 
Bootstrap - 84%-ile 48.14 17.55 17.18 37.72 34.11 16.77 -40.19 5.48 70.77 17.38 29.15 
Bootstrap - 95%-ile 53.02 21.20 35.86 41.14 39.03 35.41 -3.53 39.96 109.57 18.73 45.49 

 

Note: The table reports the results of a bootstrap of the estimated value of the permanent price impact of market orders, in 
basis points of par per $100 million, under model M2c, for trades in the 5-, 10- and 30-year securities executed on 
BrokerTec from April 15, 2019 to February 15, 2020.  The price impact estimates reported in the text, the asymptotic 
standard errors of the estimates and the 5, 16, 50, 84 and 95th percentiles of the bootstrap distribution of the parameter 
estimates are shown. 

Source: Authors' calculations based on data from the Repo Interdealer Broker Community and FINRA TRACE 
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Table B7a: Bootstrap Confidence Intervals for Differences between Price Impact Estimates for M2c – 5-year 

5-year 
Dealer 
↓ 

Dealer 

Other 
↓ 

Other 

Dealer 
↓ 

PTF 

PTF 
↓ 

Dealer 

Other 
↓ 

PTF 

PTF 
↓ 

Other 

Dealer 
↓ 

Other 

Other 
↓ 

Dealer 
Multi Self 

PTF 
↓ 

PTF 

4.27  
(2.03/6.64) 

6.90  
(-1.79/14.56) 

1.34  
(-0.90/3.78) 

4.66  
(2.15/7.23) 

10.10 
 (2.21/16.51) 

2.33  
(-2.49/10.70) 

5.79  
(1.95/10.15) 

4.39  
(0.85/7.51) 

4.59  
(2.61/6.75) 

-1.36  
(-6.85/3.70) 

Dealer 
↓ 

Dealer 
 2.83  

(-5.89/9.95) 
-2.92  

(-4.55/-1.38) 
0.45  

(-1.67/2.40) 
5.89  

(-2.11/12.30) 
-1.88  

(-6.35/6.49) 
1.53  

(-1.73/5.50) 
0.14  

(-2.87/2.71) 
0.35  

(-0.81/1.46) 
-5.64  

(-11.30/-0.34) 

Other 
↓ 

Other 
  -5.65  

(-12.85/2.97) 
-2.24  

(-9.63/6.37) 
3.14  

(-8.09/14.52) 
-4.64  

(-14.49/9.64) 
-1.24  

(-9.98/9.92) 
-2.66  

(-10.95/7.38) 
-2.51  

(-9.63/5.98) 
-8.49  

(-18.20/1.55) 

Dealer 
↓ 

PTF 
   3.30  

(1.12/5.48) 
8.84  

(0.75/15.48) 
1.04  

(-3.54/9.40) 
4.41  

(1.62/8.07) 
3.07  

(0.18/5.66) 
3.24  

(2.05/4.52) 
-2.65  

(-8.78/2.28) 

PTF 
↓ 

Dealer 
    5.46  

(-2.91/11.92) 
-2.31  

(-6.85/5.99) 
1.08  

(-2.56/5.42) 
-0.27  

(-3.86/2.41) 
-0.09  

(-1.78/1.72) 
-6.02  

(-11.87/-0.86) 

Other 
↓ 

PTF 
     -7.67  

(-17.73/7.56) 
-4.35  

(-13.98/8.40) 
-5.78  

(-15.22/3.47) 
-5.57  

(-12.19/2.49) 
-11.47  

(-21.19/-1.89) 

PTF 
↓ 

Other 
      3.41  

(-6.73/11.94) 
1.97  

(-10.52/9.28) 
2.23  

(-5.93/6.65) 
-3.81  

(-14.42/3.89) 

Dealer 
↓ 

Other 
       -1.36  

(-11.78/3.86) 
-1.18  

(-4.56/1.70) 
-7.16  

(-16.54/0.04) 

Other 
↓ 

Dealer 
        0.22  

(-1.96/2.81) 
-5.76  

(-13.08/1.55) 

Multi          -5.94  
(-11.72/-1.06) 

 

Note: The table reports the results of a bootstrap of the differences between the estimated values of the permanent price impact of market orders, in basis points of par per 
$100 million, under model M2c, for trades in the 5-year security executed on BrokerTec from April 15, 2019 to February 15, 2020.  The matrices are ordered “row minus 
column.”  The first value is the bootstrap median of the difference in price impact, and within the parentheses, the 5th and 95th percentiles of the price impact difference 
distribution are shown. 

Source: Authors' calculations based on data from the Repo Interdealer Broker Community and FINRA TRACE 
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Table B7b: Bootstrap Confidence Intervals for Differences between Price Impact Estimates for M2c – 10-year 

10-year 
Dealer 
↓ 

Dealer 

Other 
↓ 

Other 

Dealer 
↓ 

PTF 

PTF 
↓ 

Dealer 

Other 
↓ 

PTF 

PTF 
↓ 

Other 

Dealer 
↓ 

Other 

Other 
↓ 

Dealer 
Multi Self 

PTF 
↓ 

PTF 

12.69  
(12.43/12.93) 

10.90  
(-4.06/25.42) 

7.27  
(7.05/7.48) 

14.43  
(14.19/14.68) 

3.64  
(2.67/4.61) 

10.20  
(9.07/11.42) 

11.43  
(10.23/12.70) 

14.50  
(12.80/16.03) 

14.80  
(14.58/15.00) 

1.58  
(1.04/2.06) 

Dealer 
↓ 

Dealer 
 -1.81  

(-16.86/12.73) 
-5.42  

(-5.60/-5.24) 
1.74  

(1.51/1.96) 
-9.06  

(-10.05/-8.10) 
-2.49  

(-3.62/-1.29) 
-1.28  

(-2.46/-0.01) 
1.78  

(0.18/3.33) 
2.11  

(1.94/2.26) 
-11.12  

(-11.70/-10.61) 

Other 
↓ 

Other 
  -3.55  

(-18.11/11.50) 
3.56  

(-11.05/18.67) 
-7.13  

(-21.81/7.83) 
-0.62  

(-15.29/14.68) 
0.54  

(-13.64/15.74) 
3.90  

(-11.33/18.85) 
3.93  

(-10.63/19.01) 
-9.40  

(-23.82/5.60) 

Dealer 
↓ 

PTF 
   7.17  

(6.96/7.37) 
-3.63  

(-4.61/-2.67) 
2.93  

(1.80/4.15) 
4.14  

(2.97/5.43) 
7.21  

(5.60/8.75) 
7.53  

(7.40/7.64) 
-5.70  

(-6.23/-5.20) 

PTF 
↓ 

Dealer 
    -10.79  

(-11.79/-9.80) 
-4.23  

(-5.34/-3.03) 
-2.99  

(-4.21/-1.71) 
0.04  

(-1.58/1.64) 
0.36  

(0.19/0.55) 
-12.87  

(-13.43/-12.35) 

Other 
↓ 

PTF 
     6.58  

(5.16/8.10) 
7.77  

(6.29/9.31) 
10.84  

(9.02/12.61) 
11.15  

(10.21/12.14) 
-2.08  

(-3.11/-0.99) 

PTF 
↓ 

Other 
      1.19  

(-0.41/2.86) 
4.22  

(2.26/6.21) 
4.59  

(3.44/5.75) 
-8.64  

(-9.95/-7.32) 

Dealer 
↓ 

Other 
       3.03  

(0.97/5.03) 
3.37  

(2.09/4.56) 
-9.85  

(-11.27/-8.54) 

Other 
↓ 

Dealer 
        0.31  

(-1.22/1.91) 
-12.90  

(-14.61/-11.27) 

Multi          -13.23  
(-13.77/-12.74) 

 

Note: The table reports the results of a bootstrap of the differences between the estimated values of the permanent price impact of market orders, in basis points of par per 
$100 million, under model M2c, for trades in the 10-year security executed on BrokerTec from April 15, 2019 to February 15, 2020.  The matrices are ordered “row minus 
column.”  The first value is the bootstrap median of the difference in the price impact, and within the parentheses, the 5th and 95th percentiles of the price impact difference 
distribution are shown. 

Source: Authors' calculations based on data from the Repo Interdealer Broker Community and FINRA TRACE 
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Table B7c: Bootstrap Confidence Intervals for Differences between Price Impact Estimates for M2c – 30-year 

30-year 
Dealer 
↓ 

Dealer 

Other 
↓ 

Other 

Dealer 
↓ 

PTF 

PTF 
↓ 

Dealer 

Other 
↓ 

PTF 

PTF 
↓ 

Other 

Dealer 
↓ 

Other 

Other 
↓ 

Dealer 
Multi Self 

PTF 
↓ 

PTF 

29.15  
(15.93/42.95) 

46.14  
(4.50/91.48) 

8.70  
(-2.94/21.10) 

14.15  
(-0.93/28.44) 

46.09  
(4.63/91.79) 

104.16  
(44.74/164.43) 

53.17  
(2.54/105.81) 

-7.48  
(-70.41/57.49) 

26.23  
(16.40/37.43) 

34.73  
(-4.08/75.23) 

Dealer 
↓ 

Dealer 
 17.08  

(-23.71/61.14) 
-20.28  

(-30.21/-10.24) 
-14.77 (-28.38/-

3.13) 
16.69  

(-24.80/61.29) 
74.71  

(14.63/135.09) 
24.50  

(-26.64/74.50) 
-36.59  

(-96.91/26.89) 
-2.97  

(-11.29/6.09) 
5.10  

(-32.54/44.70) 

Other 
↓ 

Other 
  -38.03  

(-80.41/3.65) 
-33.47  

(-74.51/8.14) 
-1.06  

(-52.99/56.83) 
57.72  

(-14.57/130.07) 
5.95  

(-62.86/77.74) 
-54.12  

(-118.03/16.99) 
-20.56  

(-62.57/20.33) 
-11.79  

(-72.41/46.89) 

Dealer 
↓ 

PTF 
   5.43  

(-8.63/18.14) 
37.42  

(-5.14/79.72) 
94.43  

(36.65/156.01) 
44.57  

(-6.17/94.30) 
-16.24  

(-76.53/46.42) 
17.43  

(9.52/25.60) 
25.99  

(-12.41/66.47) 

PTF 
↓ 

Dealer 
    32.55  

(-11.27/75.38) 
88.64  

(31.67/151.42) 
39.02  

(-12.17/87.91) 
-21.55  

(-82.77/42.70) 
12.10  

(1.31/23.54) 
20.60  

(-19.73/61.44) 

Other 
↓ 

PTF 
     58.19  

(-16.96/125.16) 
6.38  

(-61.70/70.52) 
-53.36  

(-121.93/12.81) 
-19.98  

(-62.34/20.99) 
-11.81  

(-73.17/47.53) 

PTF 
↓ 

Other 
      -50.21  

(-134.52/23.27) 
-111.04  

(-195.96/-30.62) 
-77.28  

(-137.76/-19.46) 
-69.81  

(-141.02/1.42) 

Dealer 
↓ 

Other 
       -60.46  

(-137.86/18.98) 
-27.26  

(-75.94/23.95) 
-19.58  

(-79.08/43.84) 

Other 
↓ 

Dealer 
        33.77  

(-31.07/94.52) 
42.27  

(-34.74/113.15) 

Multi          7.80  
(-28.94/48.56) 

 

Note: The table reports the results of a bootstrap of the differences between the estimated values of the permanent price impact of market orders, in basis points of par per 
$100 million, under model M2c, for trades in the 30-year security executed on BrokerTec from April 15, 2019 to February 15, 2020.  The matrices are ordered “row minus 
column.”  The first value is the bootstrap median of the difference in the price impact, and within the parentheses, the 5th and 95th percentiles of the price impact difference 
distribution are shown. 

Source: Authors' calculations based on data from the Repo Interdealer Broker Community and FINRA TRACE 
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